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Abstract

Applications of inforpation peasures in analysis, probability theory and statistics
are pointed out. In testing the independence of random vectors under normality, the marimum
likelihood criterion is shown to be equivalent to an entropy-based test. Two large sample
tests based on entropic loss of information is presented.
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1. INTRODUCTIOR

The idea of using measures of information to prove limit
theorems is due to Linnik (1959). He gave an information-
theoretic proof of the Central Limit Theorem on Lindeberg
conditions. Renyi (1960) provides s measure-theoretic proof of =
limit theorem for Markov chains. Only recently de Guzman (19889a)
showed that Hadamard’'s Inequality follows salmost trivially from
the nonnegativity of the Kullback-Leibler information quantity.
Jefferson, May and Ravi (1989) suggest the use of entropy to the
scaling of some ordinal categorical data. Entropy-based goodness
of fit tests have been developed by Vasicek (1976), Dudewicz and
Tan der Meulen (1981) and Gokhale (1983). In statistical pattern
recognition some rules for feature evaluation are derived from
information measures (Ben--Bassat, 1882). Srivastava (1973)
attempts to extract the "intrinsic" dimensionality of =a
multivariate data set by exploiting Shannon’s information
function. In the 1last fifteen vyears, Akaike’s Information
criterion (AIC) which is based on Kullback-Leibler entropy has
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found successful application in statistical model evaluation
problems (Bozdogan, 1987). Hall (1987) shows that in kernel
density estimation, if +the kernel 1is chosen appropriately,
likelihood cross-validation does result in asymptotic
minimization of Kullback-Leibler 1loss (information measure).
Malvestuto (1889) provides a computational method .for obtaining
the maximum entropy extension of given discrete probability
distributions.

In this psaper we shall introduce Fisher s information, give
a measure-theoretic proof of Hadamard’'s ‘inequality, .and ppoposé
an entropy-based statistic for testing independence of two random
vectors.

2. FISHER INFORMATION IN EQUIVALENCE/SINGULARITY DICHOTOMIES

Let (Q, F,P) be an experiment .i.e. (Q,P) is a measurable
space and P a class of probability measure on (Q,F). We say that
an equivalence/singularity dichotomy holds if P, @ € P implies or
P= QorPdLiL Q.

Kakutani (1946) gave the following interesting example of

dichotomy. Let (Q,P) = ( mw Q1, o(w Fi1)) where (Q1,F1), 1is =a
i=1 i=1 .

seguence of measurable spaces satisfying Kolmogorov consistency

conditions.Let {Qi1}. be a sequence of measures, where Qi is on

(R1,F4) for all 1i. If P = {m1=1 P1: P11 = Qi for all 1i,}
Kakutani showed that if P = n Py and P = w1 P. € P then P = P
i=1 : i=1
~ 0 ~ ~
or PLP with the former holding iff Z H2(Pi, Pi) < o,
i=1

Here H is the Hellinger distance and is defined by

2 H2(Pi, P1) = j[(fi - 4f1) dvi

a~

-where vy = P31 + P1 ., f1 € dPsi/dvy and f1 € dPi/dvs.
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In the case where @ = B=, F = B(E®) and F is the set of all
- - 5
Gaussisan measures, let P = nw N(O,1) and P = n N(pi, o1).
i=1 ~
Feldman (1958) and Hajek (18958) showed +that P = P if and

o0

only if
@ 2
2 (pi + (1-04)2) ¢ w
i=1
o -
I case g1 = 1, P =P if and only if
pr € 12, the space of =zquare summable sequences.

What other probability measures on B(R) besides N(0,1) satisfy

the property? Shepp (1965) gsve the following answer: if P is

a probability measure in (R,B(R) and P+ is the translate of

P both then ni1 P = n P for all tis €12 if and only if P
T iz=1 .

(Lebesqgue measure) and P has finite information measure that

is, there sxists a locally absolutely continous density £ such

that
(£ )2
—— d A ¢

£

A

Thus in & translation invariant experiment finiteness of Fisher
information as defined above 1is & necessary and sufficient
condition for an I2-type dichotomy

3. AR IRFORHATIOR THEORETIC PROOF OF HADAHARD S INEQUALITY

Theorem (Hadamard ' s inequality) If A is an nxp real matrix of
rank p, then ‘

. P n 2
‘ATA’ < T = a
izl j=1 id

where A = (a13).
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Proof. Consider a p-variate random vector X = (Xi1,...,Xp)’
which has p-variate normal density with dispersion matrix
2 = ATA. The entropies H(X) and H(X1) i = 1,..,p are given by

P 1 1 1

P
H(X) = -- + -- log 2n + -- log |Z| , H(X1) = -- + -- log 2m
2 2 2 2 2
1 n,
+ — log 012 where o012 = 2 8132 i=1,...,p
2 j=1
so that
P P =Y 1 - P n -
H(X1) = - + -- log 2nu + — log n Z ai132
i=1 2 2 2 izl =1

The Rullback-Leibler guantity

H(X) - H(X1)

1

1 MY

i
is nonnegative and the log fﬁnction is monotonic yield
p n
|2] = |ATA] £ =w Z ai132 ,
izl j=1

which is Hadamard's inequality. l

4. ENTROPY-BASED TESTS

Vasicek (1879) introduced a test on the composite
hypothesis of normality based on sample estimate of entropy. The
test was shown to be consistent agasinst all alternatives without

8 singular continuous part. Its sasymptotic normality was
exhibited by Dudewicz and van der Meulen under the hypothesis of
uniformity and also under a special class of alternative
densities. - A general form of a goodness-of-fit test statistic

for families of maximum entropy distributions was given by
Gokhale (1983). The proposed test is shown consistent against an
appropriate class of alternatives and simulation and Monte Carlo
results show favorable comparison with other goodness-of-fit
tests.
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To test the independence of two random vectors, de Guzman
(1989b) showed that a test based on entropic loss of information
is equivalent to the test based on the likelihood ratio criterion
under normality assumptions.

Let Xa, a = 1,...,N be a random sample from n(p,2) and
suppose X = (X<1>7 X<2>’)" and let u and 2 be partitioned
correspondingly as

pcid 211 212
pe2> 221 222
Also, let
S = 2 (Xa-X)(Xa-X)'/N and A = NS with corresponding
S11  Siz A11 =mi12

partitions § = and A
Sz1 S22 A21 Az:z

Consider the. null hypothesis Ho: X<1> and ¥X<2> are independent.
Loss of information for discarding X<2) is given by ‘

1 |2|
L(X) = H(X) - H(X<1>Y = ¢cp-m + —— log
2 |211|
under normality assumption.
The null hypothesis is equivalent to
Ho: 212 = 221 = 0
' 1
so that l2| = |211|'222|. Hence L(X|Ho) = cp-m + — log |222|.
2
Hence
1 | 2|
W = L{(X) - L(XlHo) z —log ——4m8
2 | Z211f|Z22]

We therefore have the following theorem.
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THEOREM: For testing the null hypothesis Ho: X<1> and X¢2> are
independent, the entropy based test statistic

1 | A
W = — log —
2 |A11]| | A22|

is equivalent to the likelihood criterion when X is multivariate
normal.

We now remove the assumption that X is multivariate normal

and construct a nonparametric large sample test based on
entropic loss of information. Lét X have density f and suppose
fn is an estimator of f based on the observations Xi, Xz,...,Xn.
Y
Let X = [ ] with g, h as the densities of Y and Z
Z

Then L(X) = -jf(x) log £(x) - [ g(y)log g(v)

and under the null hypotheses Ho: Y and X sre independent

L(X|Ho)

-Jg(y)(Z)log[g(y)h(Z)]dydz - J|g(y) log(y)idx

- Jg(y)log g(y)dy - Jh(Z) log h(z)dz

+

Jg(y)log g(y) dy = - jh(Z) log h(z)dz,

o
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so that

L(X)-L(X|Ho) = - Jf(X)logf(X) dx + jg(y) log g(y) dy

+ Jh(z)'logh(z)dz = H(X) - H(Y) - H(Z).

Let fn, ¢gn and hn be density estimates of f,g and h respectively
and let

W = H(X) - H(Y) - ﬁ(Z) = - J fn(x) log fa(x) dx

+ fgn(y) loggn(y)dy + jhn(Z) log hn(z)dz)

If the null hypothesis Ho is true, W should be small. If the
density estimates fn, gn and hn are suitably chosen, ¥ can be
shown to be normsal. Consider H(X)/{H(Z) + H(Y)}. Under
Ho, H(X)/H(Z) + H(Y)}= 1. Therefore the problem reduces to
testing the null hypothesis Ho: H(X)/{H(Z) + H(Y)} = 1 against
the alternative A: H(X)/{H(Z) + H(Y)} < 1. This suggest the test
statistic

V = H(X)/{H(Z) + H(Y)}.

The asymptotic distribution of V still has to be worked out.
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